Physics 11

Assignment \# 7 - Impulse and Momentum - Multiple Choice

Due Wednesday, December 20th, 2017

Your answers for the multiple choice must be in 2 columns (1-5, 6-10)

1. A braking force is applied to a 355 kg motorcycle to reduce its speed from $108 \mathrm{~km} / \mathrm{h}$ to $34.2 \mathrm{~km} / \mathrm{h}$ in 3.00 sec . (a) The impulse is:
a) -7277.5 Ns
b) -2425.83 Ns
c) -26199 Ns
d) all of the previous
2. A gun fires a 0.25 kg projectile which acquires a velocity of $300 \mathrm{~m} / \mathrm{s}$. If the projectile takes 0.0050 seconds to travel the length of the barrel, what is the force exerted by the gun on the projectile? (Use impulse-momentum theorem)
a) 0.375 N
b) 15000 N
c) $1.5 \times 10^{7} \mathrm{~N}$
d) none of the previous
3. A baseball has a weight of 142 g and is pitched to the batter at $144 \mathrm{~km} / \mathrm{h}$ and hit back by the batter at $160 \mathrm{~km} / \mathrm{h}$. If the ball and bat were in contact for 0.004 seconds, what force was exerted by the bat on the ball? (Use impulse-momentum theorem)
a) 10792 N
b) 43.17 N
c) 2998 N
d) 157.78 N
4. A shell having a mass of 4.0 kg is fired horizontally eastward from a cannon with a velocity of $180 \mathrm{~m} / \mathrm{s}$. If the mass of the cannon is 800 kg , what is the size and direction of the velocity of the recoil of the cannon?
a) $-0.9 \mathrm{~m} / \mathrm{s}$
b) $-3.24 \mathrm{~km} / \mathrm{h}$
c) -2.01 mph
d) all of the previous
5. A bomb, sitting at rest, having a mass of 15.0 kg explodes into two pieces that fly out horizontally in opposite directions. One piece was found to have a mass of 3.00 kg and flew to the west with a speed of $80 \mathrm{~m} / \mathrm{s}$. What is the velocity of the other piece?
a) $20 \mathrm{~m} / \mathrm{s}$
b) $-20 \mathrm{~m} / \mathrm{s}$
c) $16 \mathrm{~m} / \mathrm{s}$
d) $-16 \mathrm{~m} / \mathrm{s}$
6. A toy railroad engine having a mass of 3.50 kg and moving along a straight track at a speed of $0.20 \mathrm{~m} / \mathrm{s}$ collides with a similar engine (different color, same mass) ahead of it moving in the same direction at $0.10 \mathrm{~m} / \mathrm{s}$. On colliding the engines lock and remain together. What is the velocity of the pair of engines after the collision?
a) $1.08 \mathrm{~km} / \mathrm{h}$
b) $0.3 \mathrm{~m} / \mathrm{s}$
c) $0.54 \mathrm{~km} / \mathrm{h}$
d) none of the previous
7. Harriet and Joey are at Crystal Palace on bumper cars. The bumper cars have a mass of 100 kg and Harry has a mass of 70 kg . Harriet is travelling at $1.5 \mathrm{~m} / \mathrm{s}$ when he runs into Joey who is stopped. Immediately after the collision Harry is stopped and Joey has a velocity of $1.16 \mathrm{~m} / \mathrm{s}$. What is Joey's mass?
a) 219.83 kg
b) 319.83 kg
c) 119.83 kg
d) 100 kg
8. A measurement of the momentum of a proton yields a value of $5.1 \times 10^{-21} \mathrm{~kg}-\mathrm{m} / \mathrm{s}$. If the mass of a proton is $1.7 \times 10^{-27} \mathrm{~kg}$, find the speed of this proton?
a) $3 \times 10^{6} \mathrm{~m} / \mathrm{s}$
b) $8.67 \times 10^{-48} \mathrm{~m} / \mathrm{s}$
c) $3.33 \times 10^{-7} \mathrm{~m} / \mathrm{s}$
d) none of the previous
9. A 60 kg woman is riding on an 8 kg bicycle at $5 \mathrm{~m} / \mathrm{s}$ westward. She jumps off the bicycle and continues going westward at $7 \mathrm{~m} / \mathrm{s}$. What is the velocity of the cart after she jumps off?
a) $-10 \mathrm{~m} / \mathrm{s}$
b) $10 \mathrm{~m} / \mathrm{s}$
C) $6 \mathrm{~m} / \mathrm{s}$
d) $-6 \mathrm{~m} / \mathrm{s}$
10. A bullet of mass of 15.0 g strikes a wooden block of mass 5.00 kg . The bullet becomes embedded in the block. The block with the bullet in it then flies off at $1.50 \mathrm{~m} / \mathrm{s}$. If the bullet was fired from a 4 kg rifle what was the velocity of the rifle's recoil?
a) $501.5 \mathrm{~m} / \mathrm{s}$
b) $-501.5 \mathrm{~m} / \mathrm{s}$
c) $-1.88 \mathrm{~m} / \mathrm{s}$
d) $1.88 \mathrm{~m} / \mathrm{s}$

Problem

11. A squid uses the principle of jet repulsion to get around (it isn't a fish). A squid with a mass of 1.5 kg drifting in water at $1 \mathrm{~m} / \mathrm{s}$ suddenly expels 0.1 kg of water backward to make himself move forward at $2.5 \mathrm{~m} / \mathrm{s}$. If resistance of the water is neglected, determine the velocity of the water as it leaves the squid. (Note: the water that is expelled was initially in the squid). (Borrowed from UNB online quiz)
12. A small military attack vehicle is travelling at $20 \mathrm{~m} / \mathrm{s}$ with a missile on board. The operator fires the missile with an initial velocity of $200 \mathrm{~m} / \mathrm{s}$. If the attack vehicle slows to $17.5 \mathrm{~m} / \mathrm{s}$ what is the mass of the missile if the mass of the vehicle is 1200 kg ?
